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Mickens [1] has examined the equation of motion

.x þ x1=ð2nþ1Þ ¼ 0 ð1Þ

for a non-linear oscillator with the initial conditions

xð0Þ ¼ x0; ’xð0Þ ¼ 0: ð2Þ

Here n is the positive integer and x0 is the specified amplitude. Over dots denote differentiation
with respect to time t: The approximate solution which satisfied the initial conditions (2) assumed
in his analysis is

xðtÞDA cosot: ð3Þ

Rewriting the equation of motion (1) in the form

½ .x�ð2nþ1Þ þ x ¼ 0 ð4Þ

and using the method of harmonic balance [2], the amplitude, A; and the frequency of oscillations,
o, obtained by Mickens [1] are

A ¼ x0; ð5Þ

o ¼ F1ðnÞx
�n=ð2nþ1Þ
0 ; ð6Þ
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where

F1ðnÞ ¼ 22n=
2n þ 1

n

" #( )1=ð4nþ2Þ

: ð7Þ

Ref. [3] indicates the possibility of obtaining exact solution for the non-linear second order
differential equation (1) with the initial condition (2). The objective of the present study is to
provide an approximate frequency–amplitude relation close to the exact by assuming a single-
term solution or lower order harmonics (3) and following the Ritz procedure [3]. Following the
procedure of Ref. [3] for ‘‘exact solution’’, the exact frequency–amplitude relationship obtained
for the present problem is

o ¼ F2ðnÞx
�n=ð2nþ1Þ
0 ; ð8Þ

where

F2ðnÞ ¼
n

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

ðn þ 1Þð2n þ 1Þ

r
=G

2n þ 1

2n þ 2

� �
: ð9Þ

Assuming the lower order harmonics or the single-term solution (3) and following the
Ritz procedure [3], an approximate frequency–amplitude relation obtained for the present
problem is

o ¼ F3ðnÞx
�n=ð2nþ1Þ
0 ; ð10Þ

where

F3ðnÞ ¼
1ffiffiffi
p

p 1

ðn þ 1Þ
G

1

4n þ 2

� �
=G

n þ 1

2n þ 1

� �( )1=2

: ð11Þ

In the present study, arguments of the gamma function are positive and they are less than unity.
Expressions for the gamma function [4] which were found to be the accurate for small positive
arguments (o1) were utilized in the present analysis.

Frequency–amplitude relations for the present problem given in Eqs. (6), (8) and (10) indicate
that frequency of oscillations is inversely proportional to x0

n/(2n+1). Table 1 gives the comparison
on the constant of proportionality in the frequency–amplitude relation (10) obtained using the
single-term solution (3) and the Ritz procedure, is close to the exact relation (8). It is very
interesting to note that the solution of the problem for large n will be close to that of
antisymmetric constant force oscillation equation [5,6].

When n-N, the exact frequency–amplitude relation (8) yields

o-
p

2
ffiffiffiffiffiffiffi
2x0

p ; ð12Þ
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which is nothing but the result of Ref. [6].
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Table 1

Comparison on the constant of proportionality ðox
n=ð2nþ1Þ
0 Þ in the frequency–amplitude relations

n Present study Mickens [1]

Exact solution

Eq. (9)

Ritz procedure

Eq. (11)

Relative error

(%)

Harmonic balance

Eq. (7)

Relative error

(%)

1 1.070451 1.076845 �0.6 1.049115 2.0

2 1.086126 1.096092 �0.9 1.048122 3.5

3 1.093018 1.104867 �1.1 1.044052 4.5

4 1.096894 1.109890 �1.2 1.040169 5.2

5 1.099377 1.113145 �1.3 1.036840 5.7

10 1.104745 1.120276 �1.4 1.026280 7.1

25 1.108251 1.125009 �1.5 1.014945 8.4

50 1.109472 1.126671 �1.5 1.009188 9.0

100 1.110093 1.127519 �1.6 1.005458 9.4
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